EXTERNAL TANK

STS-103/ET-101 Flight Readiness Review

External Tank Project

Ron Wetmore November 19, 1999

Overview

Date 11/19/99 Page 2

Presenter Ron Wetmore

- ET-101 Highlights
 - Fourth ET to fly with SRB camera coverage
- · Limited life component status All items within required life
- Processing anomalies
 - ET/SRB Cross-Strap Harness Failures Discussed by USA
 - ET-106 GO2 2" Disconnect Bent Poppet Stem Missing Chrome Plating
 - STS-103/ET-101 hardware assessment Discussed by BNA
- Requirement Changes
 - LH2 Tank Changes for SSME Block II Implementation
- · Changes resulting from Intertank thrust panel foam loss
 - Increased Intertank Foam Venting
- Special Topic
 - Weld Instruction Card (WIC) Certification
 - Heat Treat of Flexible Joint Ball
- · Open work/paper No constraints to flight

LH2 Tank Changes for SSME Block II Implementation

Presenter	Ron Wetmore		
Date -	1/19/99	Page	3

Change

 Revised LH2 tank vent/relief valve acceptance pressure requirements and post proof x-ray requirements

Background

- Advanced high pressure fuel turbopump in the Block II SSME has increased preburner temperature spikes during engine start transient causing reduced turbine blade life
 - PSIG action resulted in decision to modify the Block II start transient by increasing the LH2 inlet pressure at engine start command
 - Required modification of the ET pre-pressurization control bands and LH2 ullage pressure ICD
- Raised pre-pressurization control band will be used only on flights with three Block II SSMEs
 - Not required for STS-103/ET-101

Description

Revised ET GH2 vent/relief valve requirements for higher pre-press level - No design change

Was

Now

Relief pressure

 $36.0 \pm 1.0 \text{ psig}$

36.75+0.25/-0.00 psig

Reseat pressure

34.0 psig

34.25 psig

Revised post proof weld x-ray requirements for LH2 tank circumferential welds

LH2 Tank Changes for SSME Block II Implementation

Presenter	Ron Wetmore		
Date	11/19/99	Page	4

Basis for Certification

· Test and Inspection

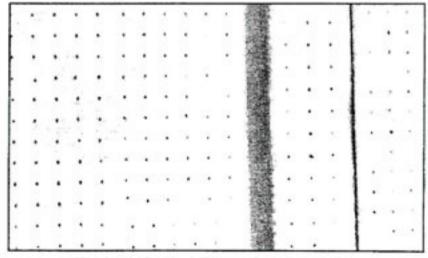
- Successful completion of LH2 tank proof test
- Performed post proof weld x-ray requirements on additional 215 inches of LH2 tank circumferential welds
- No change to critical test demonstrated LH2 tank Factor of Safety
- Raised LH2 tank pre-press band was demonstrated on STS-91 tanking test
 - Narrow band with 0.5 second GHe bursts was demonstrated
 - Pre-press level demonstrated was 0.3 psi lower than planned for use with three Block II SSMFs

Analysis

- Propulsion analysis shows LH2 tank ullage pressure will be within LCC limits during pre-press
- Structural analysis shows overall critical factor of safety unchanged
 - Factor of Safety for critical circumferential welds (failure mode: ultimate tension)

	Weld ID	<u>Required</u>	<u>Was</u>	Now
•	LH2 Tank H4	1.25	1.51	1.45
•	LH2 Tank H5	1.25	1.49	1.42

Intertank Foam Venting


Presenter Ron Wetmore

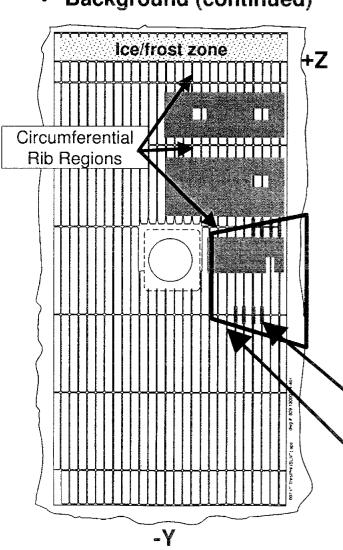
Date 11/19/99 Page 5

Change

Increased vented portions of the Intertank thrust panel and skin/stringer panel foam

- Post flight inspection of STS-87 revealed out-of-family damage to the Orbiter tiles caused by foam loss from the ET Intertank thrust panel
- A rigorous test program has demonstrated that foam venting reduces popcorn-type debris
- Vented foam configuration has been certified by test and analysis to do no harm
- Venting of Intertank foam implemented on STS-96/ET-100 and STS-93/ET-99
- Review of SRB video following STS-96/ET-100 showed less debris with vented foam
- Based upon STS-96/ET-100 data and additional analysis, area of Intertank thrust panel foam to be vented was increased for STS-93/ET-99

Typical Vented Foam Configuration



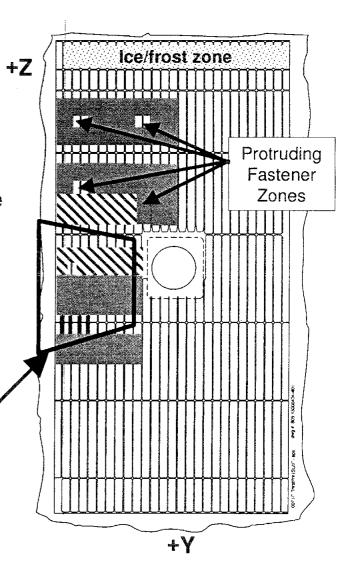
Intertank Foam Venting

Presenter	Ron Wetmore			
Date 1	1/19/99	Page	6	

Background (continued)

ET-100/ET-99 Common Vented Areas

ET-99 Additional Vented Areas

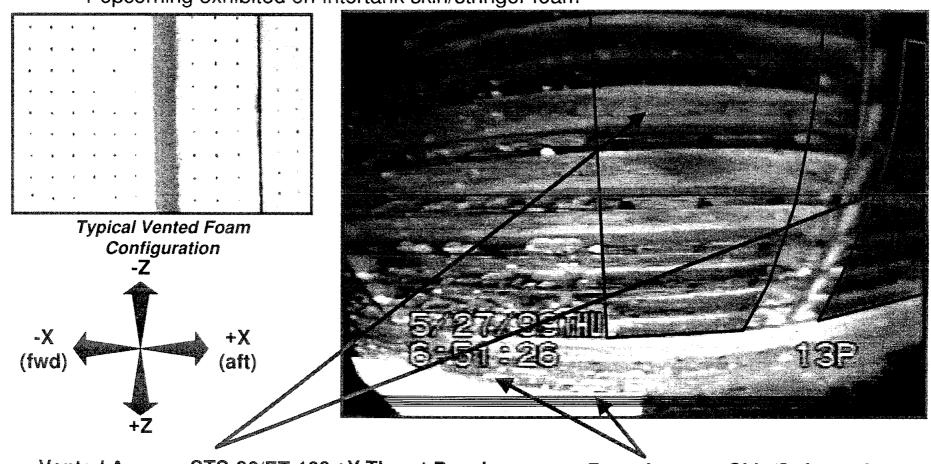

Approximate Vented Surface Areas in Upper +Z Quadrant $(Total = 160ft^2)$

STS-96/	STS-93/
ET-100	ET-99
78 ft ²	90 ft ²

STS-93/ET-99 Flight Test

Longitudinal ribs adjacent to circumferential ribs

> Camera Field of View



Intertank Foam Venting

Presente	Ron Wetmore			
Date	11/19/99	Page	7	

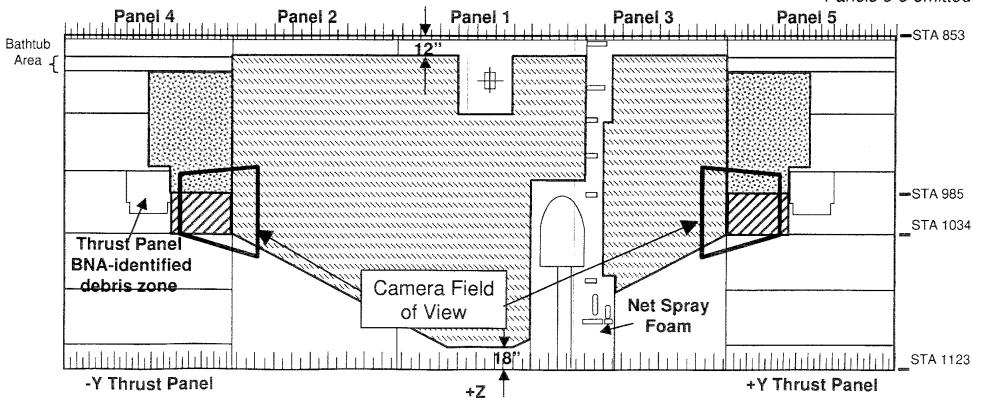
- Background (continued)
 - Review of STS-93/ET-99 SRB flight video confirmed performance enhancement realized through foam venting
 - · Popcorning exhibited on Intertank skin/stringer foam

Vented Area on STS-96/ET-100 +Y Thrust Panel

Foam Loss on Skin/Stringer Areas

Intertank Foam Venting

Presente	r Ron Wetmore	·	
 Date	11/19/99	Page	8


Description of Change

- · Perform venting of Intertank foam areas
 - · Combination of BNA-identified debris zone and areas of observed foam loss
 - Areas of potential ice-formation and unmachined foam excluded
 - Vented thrust panel area in BNA-identified debris zone = 90 ft2
 - Vented thrust panel area outside of BNA-identified debris zone = 12 ft2
 - Vented skin/stringer areas = 725 ft²

Unvented BNA-identified debris zone = 36 ft² (8 ft² bathtubs, 18 ft² ramps, 10 ft² cryo)

Panels 6-8 omitted

Thrust Panel and Skin/Stringer Panel Foam Venting

rieseillei	Hon Wetmore			
Date	11/19/99	Page	9	

· Basis for Certification

- Test
 - Tests performed in different test beds following various environmental conditioning
 - Results from all performance testing show that vented foam performs as well as or better than the non-vented foam configuration and measurably reduces foam loss

Similarity

 Vented foam configuration similar to configuration flown on STS-96/ET-100 and STS-93/ET-99

Certification Test	No. of Tests	Humidity	Salt Fog	Vented
Vented Foam Certification Testing				
Mechanical Properties/Acceptance Testing				
Density	200			Х
Bond Tension	540	X	X	X
Flatwise Tension	540	X	X	Х
Lap Shear	360	X		Х
Plug Pulls	144		X	Х
Flexure (Ribbed panels)	24	X		Х
Thermal Properties				
Thermal Conductivity	24	X	X	Х
Flight Verification				
Hot Gas - Flat Panels, Machined foam	20	X	X	Х
Hot Gas - Rib Panels, Machined foam	63	X	X	Х
Hot Gas - Skin/stringer, Machined foam	7	X		Х
Thermal/Vacuum, Flat Panels, Machined foam	40	×	X	X
Thermal/Vacuum, Single Rib Panels, Machined foam	14			Х
Thermal/Vacuum, Rib Panels, Machined foam	24	×	X	Χ
Thermal/Vacuum, Skin/stringer, Machined foam	8	X		Х
Wind Tunnel (AEDC), Machined foam	4			Χ
Vibro/Acoustic Test (DOE C Addendum Testing)	6	X		Χ
Process Verification/Acceptance				
Full-Scale Process Pathfinder (GVTA)	1			Х

Thrust Panel and Skin/Stringer Panel Foam Venting

Presenter	Ron Wetmore		
Date 1	1/19/99	Page	10

· Basis for Certification

- Popcorning performance of additional rib and skin/stringer configurations similar to that of previously successfully vented thrust panel configurations
- NASA/LMMSS IFA team reviewed test results indicates that venting of rib locations adjacent to circumferential rib ramps and skin/stringer panel areas are certified "to do no harm"
- No safety of flight concerns

Weld Instruction Card (WIC) Certification

Presenter	Ron Wetmore		
Date 1	1/19/99	Page	11

Issue

 During a recent weld schedule review, it was determined that several of the weld schedules were incorrectly certified

- Weld certification requirements are established through Engineering process requirements documents
 - Certification requirements verify that weld schedules produce acceptable weld strengths and quality
 - Requirements are then restated and implemented in the "how to" manufacturing process documents
- Ambiguity of the weld process documents and reliance on institutional knowledge led to instances of incomplete testing for weld certification

Weld Instruction Card (WIC) Certification

Presenter	Ron Wetmore		
Date -	11/19/99	Page	12

- Performed LMMSS Quality and Engineering review of all "as-built" ET welds
 - Discrepancies were documented on non-conformance documents (NCDs)
 - Each NCD was individually analyzed, dispositioned and approved by LMMSS and NASA/MSFC
 - When necessary, additional welded panels were fabricated and tested
 - All discrepant weld schedules were reviewed to the correct certification condition
 - Weld operations were suspended until discrepancies were resolved
- Process escapes led to end-to-end weld process review
 - LMMSS and NASA/MSFC conducted a review (October present) of all ET welding processes
 - No significant findings that required immediate implementation prior to weld operations resuming
 - 49 findings that require resolution:
 - Procedural enhancements
 - Communication/information flow down
 - Adherence to command media
 - Training enhancement opportunities
 - One additional issue identified during the NASA/LMMSS Review
 - Concern for design strength of welds (cryogenic properties) due to effect of weld parameter variations

Weld Instruction Card (WIC) Certification

Presenter	Ron Wetmore		
Date 1	1/19/99	Page	13

STS-103/ET-101 Rationale for Flight

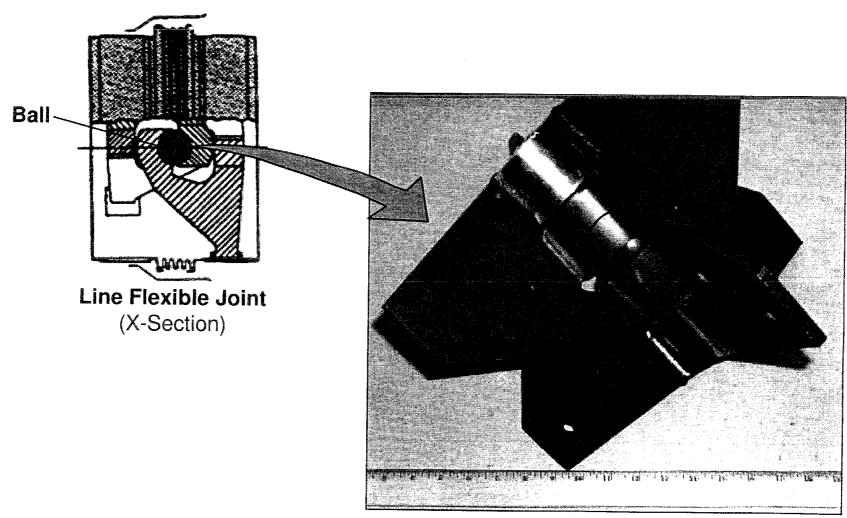
- Team reviewed the 49 findings noted during the review and determined that there were no concerns for ET-101
- Team also conducted an assessment of the weld strength and determined that adequate rationale existed for ET-101 clearance:
 - Weld-by-weld reviews
 - Review of as-built parameter charts
 - ET-101 as-delivered weld tests
 - Parameter range test data
 - Wide panel and confidence panel data
 - Fracture property review
 - Proof test stresses and history
 - Flight stress analysis
- LMMSS and NASA/MSFC Review Team concluded that there was no safety of flight concerns
 - Resolution of remaining findings are not considered as constraints to flight
 - Root cause identified as lack of clear process requirements and lack of command media that controls of weld certifications
 - Corrective action plan in work

Heat Treat of Flexible Joint Ball

١	Hon Wetmore		
	Date	11/19/99	Page 14

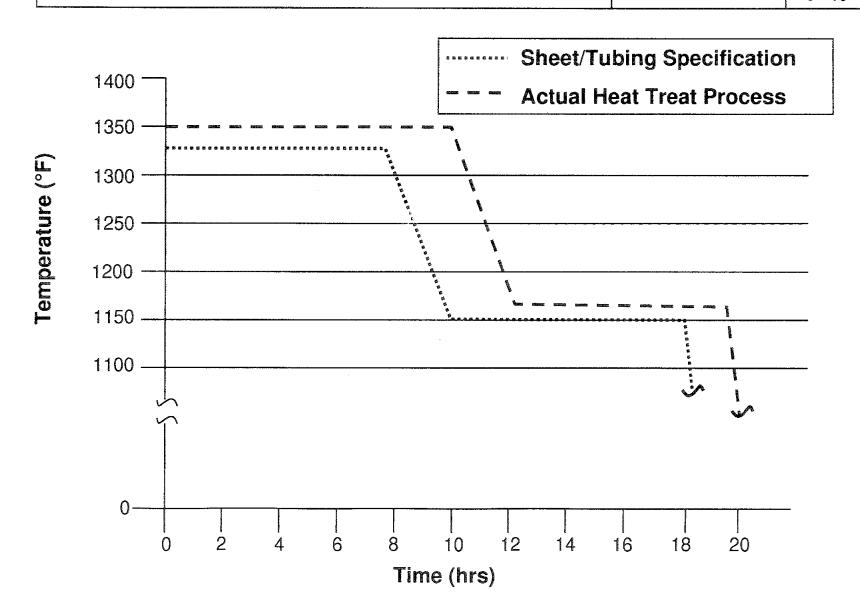
Issue

Incorrect heat treat of Inconel 718 Ball Strut Tie-Rod Assembly (BSTRA) balls


- 24 BSTRA flexible joints on each ET
 - 19 balls in the GO2 and GH2 pressurization line joints
 - · 5 balls in the LO2 feedline joints
- Both diameter balls affected by incorrect heat treat
 - Specification for Inconel Sheet/Tubing required for heat treatment of BSTRA balls
- BSTRA subcontractor recently determined that their heat treating vendor had incorrectly age hardened a large number of balls to a combination of the specifications for Inconel Sheet/Tubing and Inconel Bars/Forgings
 - ET feedline and pressurization line supplier discovered discrepancy during a review of data pack at LMMSS' request
- Test coupons accompanying suspect balls showed that the parts exceeded specification requirements
 - Tested at 40-41 Rockwell "C" (Rc) hardness
 - Specification requires minimum of 37 Rc

Heat Treat of Flexible Joint Ball

Presenter	Ron Wetmore			
Date -	11/19/99	Page	15	


Ball Strut Tie-Rod Assembly (LO2 Feedline 2.24" dia. ball shown)

Heat Treat of Flexible Joint Ball

į	Presenter Ron Wetmore				
	Date -	1/19/99	Page	16	

Heat Treat of Flexible Joint Ball

Fresenter	Ron Wetmore		
Date 1	1/19/99	Page	17

Discussion

- Suspect balls are also installed on the STS-103/ET-101 pressurization lines
- Review of build paper showed that balls of this pedigree have previously flown from the same heat treat lot with same hardness values
 - No anomalies noted
- LMMSS and NASA/MSFC metallurgists reviewed the differences in heat treat cycle and determined that the structural integrity of the BSTRA is unaffected

Rationale for Flight

- Test
 - Qualification test remains valid
- Analysis
 - Significant stresses are compression
 - Minor differences in hardness values not sufficient to affect compression strength
 - Design FS > 4.0
- Acceptance
 - Test coupons had final acceptance values within acceptable limits
 - Rockwell "C" hardness = 40-41 vs requirement of 37
 - Hardness values for properly treated balls = 39-47 Rc

Readiness Statement

Presenter Ron Wetmore

Date 11/19/99 Page 18

The External Tank, ET-101, is hereby certified and ready for STS-103 flight pending completion/closure of open and planned work

Terry L. Hibbard

Vice President, External Tank Project Lockheed Martin Michoud Space Systems Parker V. Counts

Manager, External Tank Project Marshall Space Flight Center